Study of Tug Escorts in Puget Sound Probabilistic Oil Outflow Evaluation

Typical Single and Double Hull Structures

Baseline Ship – 6 x 2 SuexMax Double-hull

Principal Characteristics

– LBP 260.4 m

- Beam 47.435 m

Depth 23.673 m

Draft (PS) 14.8 m

DWT (full) 150,000 MT

DWT (PS) 125,000 LT

A 125,000 DWT tanker is unlikely to be built for economic reasons as it would be inefficient for other trades

Loading of Polar and ATC Tankers

Polar Endeavour Class is 142,000 dwt

ATC Alaska Class is 185,000 dwt

Each vessel is loaded to a 125,000 DWT for Puget Sound deliveries.

Polar Endeavour class ATC Alaska class

Tanks 2, 3, 4 and 6 loaded to 98%.

Checkerboard loading.

Tanks 1 loaded to 65%.

Tanks 5 loaded to 77%.

Polar Endeavour Class

ATC Alaska Class

125,000 dwt loading approach

Polar Endeavour Class Profile view

ATC Alaska Class
Plan view

Typical and Polar Millennium Double Hull Spacing

Double Hull Dimensions
Suezmax = 2m*
BP ATC = 2.7m
Polar = 3.0m

- * Future MARPOL regulations to be adopted in 2006 require oil outflow performance requirements.
 - Approximately 2.5m double hull for 6x2 cargo arrgt.
 - Approximately 2.3m double hull for 6x3 cargo arrgt.

Probabilistic Oil Outflow Methodology

- Define intact condition.
- Assemble damage cases and their associated probabilities of occurrence for both side (collisions) and bottom damage (groundings).
- Calculate oil outflow for each damage case.
- Calculate oil outflow parameters.
 - Probability of zero oil outflow
 - Expected (mean) oil outflow
 - Extreme (average of highest 1/10) oil outflow

PDF's from IMO & OPA 90 Regulations

Hydrostatic Pressure Balance

```
Internal Pressure = External Pressure
Internal Pressure = Po + (Ho) (Doil)
External Pressure = Pa + (Hsw) (Dsw)
```


Oil Outflow and Capture

As loaded

Aground after damage No capture by double-hull

Aground after damage
Some oil captured by double-hull

Oil Outflow Parameters

Oil outflow cumulative probability

Mean Oil Outflow in Groundings

Probability of Zero Outflow Groundings

Influence of PS loading on spill size

Alaska class

125dwt aground

Alaska class

full load aground

 Deeper draft may lead to more chance of grounding

